Abstract
Nonionic cellulose ethers displaying a lower consolute temperature, or cloud-point, close to body temperature were investigated as potential carrier systems for the delivery of local anesthetic agents to the periodontal pocket. The interaction between the polymers, i.e., ethyl(hydroxyethyl)cellulose (EHEC) and hydrophobically modified EHEC (HM-EHEC), and ionic surfactants was determined in the absence and in the presence of the local anesthetic agents lidocaine and prilocaine. The cloud-point and rheology data indicate interactions between the polymer and both anionic and cationic surfactants. More precisely, a number of ionic surfactants were found to result in an increase in cloud-point at higher surfactant concentrations, a surfactant-concentration-dependent thickening, and a temperature-induced gelation upon heating. Upon addition of the local anesthetic agents lidocaine and prilocaine in their uncharged form to EHEC and HM-EHEC, in the absence of surfactants, only minor interaction with the polymer could be inferred. However, these substances were found to affect the polymer–surfactant interaction. In particular, the drug release rate in vitro as well as the stability and temperature-dependent viscosity were followed for an EHEC/SDS system and EHEC/myristoylcholine bromide system upon addition of lidocaine and prilocaine. The data indicate a possibility of formulating a local anesthetic drug delivery system suitable for administration into the periodontal pocket where at least small amounts of active ingredients can be incorporated into the system without severely affecting the gelation behavior. The results found for the cationic myristoylcholine bromide system are particularly interesting for the application in focus here since this surfactant is antibacterial and readily biodegradable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.