Abstract

BackgroundRepetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) could provide treatment alternatives to stimulant medication for attention-deficit/hyperactivity disorder (ADHD), given some evidence for improvements in cognition and clinical symptoms. However, despite a lack of solid evidence for their use, rTMS and tDCS are already offered clinically and commercially in ADHD. This systematic review and meta-analysis aimed to critically appraise rTMS and tDCS studies in ADHD to inform good research and clinical practice.MethodsA systematic search (up to February 2019) identified 18 studies (rTMS 4, tDCS 14; 311 children and adults with ADHD) stimulating mainly the dorsolateral prefrontal cortex (dlPFC). We included 12 anodal tDCS studies (232 children and adults with ADHD) in 3 random-effects meta-analyses of cognitive measures of attention, inhibition and processing speed.ResultsThe review of rTMS and tDCS showed positive effects in some functions but not others, and little evidence for clinical improvement. The meta-analyses of 1 to 5 sessions of anodal tDCS over mainly the left or bilateral dlPFC showed trend-level improvements in inhibition and processing speed, but not in attention.LimitationsHeterogeneity in stimulation parameters, patient age and outcome measures limited the interpretation of findings.ConclusionThe review and meta-analysis showed limited evidence that 1 to 5 sessions of rTMS and tDCS, mostly of the dlPFC, improved clinical or cognitive measures of ADHD. These findings did not support using rTMS or tDCS of the dlPFC as an alternative neurotherapy for ADHD as yet. Larger, multi-session stimulation studies identifying more optimal sites and stimulation parameters in combination with cognitive training could achieve larger effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.