Abstract

With the growth of genetic engineering, mice have become common as models of human diseases. Because of the small size and high heart rates in mice, high spatial and temporal resolutions are required for cardiovascular measurements. We have developed and applied high-resolution Doppler probes and signal processing to measure blood velocity in the heart and peripheral vessels of anesthetized mice noninvasively. We can measure velocity pulse arrival times for determining pulse-wave velocity and arterial stiffness; peripheral velocity waveforms as indices of arterial resistance, compliance, and wave reflections; and tail artery velocity for determining systolic and diastolic blood pressure using a tail-cuff. These noninvasive methods are convenient and easy to apply and have been used to detect and evaluate numerous cardiovascular phenotypes in mutant mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.