Abstract

Noninvasive detection of human blood components is the dream of human beings and the goal of clinical detection. From the perspective of mathematical analysis, based on the grey analysis system, the principle of spectral chemical quantitative analysis and the solution method of multivariate linear equation, this paper pioneers the spectrum elimination method, and obtains a complete, high-precision, synchronous and noninvasive detection system for a variety of human blood components. The spectral elimination method applies the principle of elimination method in mathematics to the noninvasive quantitative analysis of human blood components by spectral method, reduces the influence of non-target components on the detection of target components, and improves the accuracy of noninvasive quantitative analysis of human blood components. To demonstrate the effectiveness of the method, taking the analysis of the contents of seven blood components (hemoglobin, red blood cell count, neutrophils, lymphocytes, monocytes, eosinophils and basophils) in blood as an example, fourteen models were established by two different methods. From the comparison of modeling results, it can be concluded that when the seven models established by spectral elimination method predict the corresponding seven components of all samples, the predicted correlation coefficients are more than 0.9500. The experimental results show that the spectral elimination method and non-invasive detection system proposed can predict the content of human blood components with high accuracy. This paper studies a high-precision, simultaneous and noninvasive quantitative analysis system of multiple human blood components for the first time, which not only makes great progress in the non-invasive chemical quantitative analysis of human blood components by spectroscopy, but also has great application value for clinical medical treatment and disease diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.