Abstract
A generalised random walk scheme for random walks in an arbitrary external potential field is investigated. From this concept which accounts for the symmetry breaking of homogeneity through the external field, a generalised master equation is constructed. For long-tailed transfer distance or waiting time distributions we show that this generalised master equation is the genesis of apparently different fractional Fokker-Planck equations discussed in literature. On this basis, we introduce a generalisation of the Kramers-Moyal expansion for broad jump length distributions that combines multiples of both ordinary and fractional spatial derivatives. However, it is shown that the nature of the drift term is not changed through the existence of anomalous transport statistics, and thus to first order, an external potential Φ(x) feeds back on the probability density function W through the classical term ∝∞ ∂/∂ xФ´(x)W(x, t), i.e., even for Levy flights, there exists a linear infinitesimal generator that accounts for the response to an external field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.