Abstract

Presented is a novel approach for online trajectory modification of joint motions to transfer a free open kinematic chain, undergoing flight phase, from a specified initial configuration to a specified final configuration. Formally, it is assumed that a nominal trajectory, computed offline, can reorient the kinematic chain (reconfiguration problem) for a given angular momentum on a time interval. A modification algorithm of body joints, based on optimal control, is developed such that for different angular momentums and time intervals, the same reconfiguration problem can be solved online. This approach can be utilised for space robotics applications and online computation of planar running trajectories during flight phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.