Abstract

We derive semi-analytic formulae for the local bispectrum and trispectrum in general two-field inflation and provide a simple geometric recipe for building observationally allowed models with observable non-Gaussianity. We use the \delta N formalism and the transfer function formalism to express the bispectrum almost entirely in terms of model-independent physical quantities. Similarly, we calculate the trispectrum and show that the trispectrum parameter \tau NL can be expressed entirely in terms of spectral observables, which provides a new consistency relation unique to two-field inflation. We show that in order to generate observably large non-Gaussianity during inflation, the sourcing of curvature modes by isocurvature modes must be extremely sensitive to the initial conditions, and that the amount of sourcing must be moderate in order to avoid excessive fine-tuning. Under some minimal assumptions, we argue that the first condition is satisfied only when neighboring trajectories through the two-dimensional field space diverge during inflation. Geometrically, this means that the inflaton must roll along a ridge in the potential V for some time during inflation and that its trajectory must turn slightly (but not too sharply) in field space. Therefore, it follows that two-field scenarios with attractor solutions necessarily produce small non-Gaussianity. This explains why it has been so difficult to achieve large non-Gaussianity in two-field inflation, and why it has only been achieved in a narrow class of models like hybrid inflation and certain product potentials where the potential and/or the initial conditions are fine-tuned. Some of our conclusions generalize qualitatively to general multi-field inflation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.