Abstract
Ternary blending is an effective strategy for broadening the absorption range of the active layer in bulk heterojunction polymer solar cells and for constructing an efficient cascade energy landscape at the donor/acceptor interface to achieve high efficiencies. In this study, we report efficient ternary blend solar cells containing an acceptor alloy consisting of the indacenodithiophene-based nonfullerene material, IDT2BR, and the fullerene material, phenyl-C71-butyric acid methyl ester (PC71BM). The IDT2BR materials mix fully with PC71BM materials, and the energy state of this phase can be tuned by varying the blending ratio. We performed photoluminescence and external quantum efficiency studies and found that the ternary charge cascade structure efficiently transfers the photogenerated charges from the polymer to IDT2BR and finally to PC71BM materials. Ternary blend devices containing the IDT2BR:PC71BM acceptor blend and various types of donor polymers were found to exhibit power conversion efficiencies (PCEs) improved by more than 10% over the PCEs of the binary blend devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.