Abstract

We present a field-theoretical method to obtain consistently the equations of motion for small amplitude condensate perturbations in a homogeneous Bose-condensed gas directly in real time. It is based on a linear response and combines the Schwinger–Keldysh formulation of nonequilibrium quantum field theory with the Nambu–Gor'kov formalism of quasiparticle excitations in the condensed phase and the tadpole method in quantum field theory. This method leads to causal equations of motion that allow us to study the nonequilibrium evolution as an initial value problem. It also allows us to extract directly the Ward identities, which are a consequence of the underlying gauge symmetry and which in equilibrium lead to the Hugenholtz–Pines theorem. An explicit one-loop calculation of the equations of motion beyond the Hartree–Fock–Bogoliubov approximation reveals that the nonlocal, absorptive contributions to the self-energies corresponding to the Beliaev and Landau damping processes are necessary to fulfill the Ward identities in or out of equilibrium. It is argued that a consistent implementation at low temperatures must be based on the loop expansion, which is shown to fulfill the Ward identities order by order in perturbation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.