Abstract

Gauss's principle of least constraint is used to develop nonequilibrium molecular-dynamics algo­ rithms for systems SUbject to constraints. The treatment not only includes nonholonomic constraints-those involving velocities-but it also provides a basis for simulating nonequilibrium steady states. We describe two applications of this new use of Gauss's principle. The first of these examples, the isothermal molecular dynamics of a three-particle chain, can be treated analytically. The second, the steady-state diffusiort~of a Lennard-Jones liquid, near its triple point, is studied nu­ merically. The measured diffusion coefficient agrees with inaependent estimates from eqUilibrium fluctuation theory and from Hamiltonian external fields. I. INTRODUCTION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.