Abstract
We present a guide to compute the phase-boundaries of classical systems using a dynamic Clausius–Clapeyron integration (dCCI) method within the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) code. The advantage of the dCCI method is because it provides coexistence curves spanning a wide range of thermodynamic states using relatively short single non-equilibrium simulations. We describe the state-of-the-art of non-equilibrium free-energy methods that allow us to compute the Gibbs free-energy in a wide interval of pressure and/or temperature. We present the dCCI method in details, discuss its implementation in the LAMMPS package and make available source code, scripts, as well as auxiliary files. As an illustrative example, we determine the phase diagram of silicon in a range of pressures covering from 0 to 15 GPa and temperatures as low as 400 K up to the liquid phase, in order to obtain the phase boundaries and triple point between diamond, liquid and β-Sn phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.