Abstract
In Phys. Rev. Lett. 114 (2015) 6, 061601, we reported on a new universality class for longitudinally expanding systems, encompassing strongly correlated non-Abelian plasmas and $N$-component self-interacting scalar field theories. Using classical-statistical methods, we showed that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Here we significantly expand on our previous work and delineate two further self-similar regimes. One of these occurs in the deep infrared (IR) regime of very high occupancies, where the nonequilibrium dynamics leads to the formation of a Bose-Einstein Condensate. The universal IR scaling exponents and the spectral index characterizing the isotropic IR distributions are described by an effective theory derived from a systematic large-$N$ expansion at next-to-leading order. Remarkably, this effective theory can be cast as a vertex-resummed kinetic theory. The other novel self-similar regime occurs close to the hard physical scale of the theory, and sets in only at later times. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.