Abstract

Results are reported from numerical modeling and experimental study of a chemically reacting boundary layer, formed on a body inserted into a stream of potassium-seeded combustion products of gaseous hydrocarbon fuels. The numerical model developed in previous work is modified to incorporate current data on patassium chemical kinetics. The temperature and potassium atom number density profiles are measured across the boundary layer formed on a cylindrical specimen of Al 2O 3 dense ceramics by flow of combustion products of a propane-air mixture. The numerical results are compared with present experimental data as well as those available from the literature. The comparison is carried out for a broad range of experimental conditions including the postflame burned-gas region, and the boundary layers on a cylinder and on a flat plate. It provides verification of the proposed model, revision of the rate constants of some reactions of potassium-containing species, and supports the value of potassium superoxide dissociation energy of 247 kJ/mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.