Abstract
Abstract. A review of non-diffusive transport in fluids and plasmas is presented. In the fluid context, non-diffusive chaotic transport by Rossby waves in zonal flows is studied following a Lagrangian approach. In the plasma physics context the problem of interest is test particle transport in pressure-gradient-driven plasma turbulence. In both systems the probability density function (PDF) of particle displacements is strongly non-Gaussian and the statistical moments exhibit super-diffusive anomalous scaling. Fractional diffusion models are proposed and tested in the quantitative description of the non-diffusive Lagrangian statistics of the fluid and plasma problems. Also, fractional diffusion operators are used to construct non-local transport models exhibiting up-hill transport, multivalued flux-gradient relations, fast pulse propagation phenomena, and "tunneling" of perturbations across transport barriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.