Abstract

To present a novel imaging technique used for rapid, nondestructive histological assessment of renal neoplasias using a dual-component fluorescence stain and structured illumination microscopy (SIM). After Institutional Review Board approval, 65 total biopsies were obtained from 19 patients undergoing partial or radical nephrectomy. Biopsies were stained with a dual-component fluorescent, and optically sectioned SIM images were obtained from the surface of the intact biopsies. Specimens were subsequently fixed and analyzed using hematoxylin and eosin (H&E) histopathologic methods and compared with SIM images. A single, board-certified pathologist blinded to specimens reviewed all SIM images and H&E slides, and determined the presence or absence of neoplasias. Results of blinded diagnosis of SIM were validated against traditional pathology. Of the 19 patients, 15 underwent robotic partial nephrectomies and 4 underwent laparoscopic nephrectomies. Indications included clinical suspicion of renal cell carcinoma. In total, 65 biopsy specimens were available for review. Twenty-one specimens were determined to be neoplastic on H&E, whereas 41 represented benign renal tissue. The final sensitivity and specificity of our study were 79.2% and 95.1%, respectively. SIM is a promising technology for rapid, near-patient, ex vivo renal biopsy assessment. By improving the ability to rapidly assess sufficiency of biopsy specimens and enabling immediate diagnostic capability, SIM aids in more effective biopsy performance, tissue triage, and patient counseling regarding management options. Additionally, because tissue is preserved, effective utilization of downstream diagnostic tests and molecular assessments are possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.