Abstract

Defects in multicrystalline silicon wafers after saw-damage etch (SDE) for different etch durations are characterized nondestructively using scanning electron acoustic microcopy (SEAM). SEAM is shown to be able to detect both surface and subsurface defects, as well as crystallographic imperfections such as grain boundaries in mc-Si wafers. The capabilities of the SEAM imaging are further extended for investigations of the structural properties of the saw-damage-induced defects and optimization of the SDE process. It is established that SEAM could be effective in determining the optimal SDE etch duration required for the minimization or complete removal of the saw-damage layer. In addition, it also confirms that the SDE process itself does not create new line-like defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.