Abstract
This paper is based on the study of the set of nondecomposable integer solutions in a Gomory corner polyhedron, which was recently used in a reformulation method for integer linear programs. In this paper, we present an algorithm for efficiently computing this set. We precompute a database of nondecomposable solutions for cyclic groups up to order 52. As a second application of this database, we introduce an algorithm for computing nontrivial simultaneous lifting coefficients. The lifting coefficients are exact for a discrete relaxation of the integer program that consists of a group relaxation plus bound constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.