Abstract

In this paper, we present a power control algorithm in cognitive radio multiple-input–multiple-output (MIMO) system over time-varying fading channels based on the utility-based framework. In particular, a more general objective function framework is proposed under a long- or short-term transmitting and interference power constraints for secondary users, which results the optimization problem is nonconvex. A stochastic optimization algorithm is proposed based on an improved quantum-behaved particle swarm optimization (IQPSO), which can solve the nonconvex optimization problem efficiently. The acceleration coefficients are adjusted with time-varying equations which can help the particles jump out the local optimum. Due to the characteristics of wave function of quantum Delta potential well model, IQPSO can get better optimal solutions in search space for the stochastic optimization problem. To show the efficiency of the proposed algorithm, the utilities of the MIMO CR system got by IQPSO are compared with other approaches in the literature in different case studies, which show that the proposed algorithm can solve the nonconvex problem efficiently and achieve significant throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.