Abstract

Motivated by the fact that important real-life problems, such as the protein docking problem, can be accurately modeled by minimizing a nonconvex piecewise-quadratic function, a nonconvex underestimator is constructed as the minimum of a finite number of strictly convex quadratic functions. The nonconvex underestimator is generated by minimizing a linear function on a reverse convex region and utilizes sample points from a given complex function to be minimized. The global solution of the piecewise-quadratic underestimator is known exactly and gives an approximation to the global minimum of the original function. Successive shrinking of the initial search region to which this procedure is applied leads to fairly accurate estimates, within 0.0060%, of the global minima of synthetic nonconvex functions for which the global minima are known. Furthermore, this process can approximate a nonconvex protein docking function global minimum within four-figure relative accuracy in six refinement steps. This is less than half the number of refinement steps required by previous models such as the convex kernel underestimator (Mangasarian et al., Computational Optimization and Applications, to appear) and produces higher accuracy here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.