Abstract
An extremely focused optical field down to sub-10 nm in an apertureless near-field scanning optical microscope has been used widely in surface nanostructuring and structure characterization. The involved sub-10 nm near-field heating has not been characterized quantitatively due to the extremely small heating region. In this work, we present the first noncontact thermal probing of silicon under nanotip focused laser heating at a sub-10 nm scale. A more than 200 °C temperature rise is observed under an incident laser of 1.2 × 10(7) W/m(2), while the laser polarization is well aligned with the tip axis. To explore the mechanism of heating and thermal transport at sub-10 nm scale, a simulation is conducted on the enhanced optical field by the AFM tip. The high intensity of the optical field generated in this region results in nonlinear photon absorption. The optical field intensity under low polarization angles (∼10(14) W/m(2) within 1 nm region for 15° and 30°) exceeds the threshold for avalanche breakdown in silicon. The measured high-temperature rise is a combined effect of the low thermal conductivity due to ballistic thermal transport and the nonlinear photon absorption in the enhanced optical field. Quantitative analysis reveals that under the experimental conditions the temperature rise can be about 235 and 105 °C for 15° and 30° laser polarization angles, agreeing well with the measurement result. Evaluation of the thermal resistances of the tip-substrate system concludes that little heat in the substrate can be transferred to the tip because of the very large thermal contact resistance between them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.