Abstract

Dielectric fluctuations are shown to be the dominant source of noncontact friction in high-sensitivity scanning probe microscopy of dielectric materials. Recent measurements have directly determined the friction acting on custom-fabricated single-crystal silicon cantilevers whose capacitively charged tips are located 3-200 nm above thin films of poly(methyl methacrylate), poly(vinyl acetate), and polystyrene. Differences in measured friction among these polymers are explained here by relating electric field fluctuations at the cantilever tip to dielectric relaxation of the polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.