Abstract

The interfaces between perovskite layer and electrodes play a crucial role on efficient charge transport and extraction in perovskite solar cells (PSCs). Herein, for the first time we applied a low-cost nonconjugated polymer poly(vinylpyrrolidone) (PVP) as a new interlayer between PCBM electron transport layer (ETL) and Ag cathode for high-performance inverted planar heterojunction perovskite solar cells (iPSCs), leading to a dramatic efficiency enhancement. The CH3NH3PbI3-xClx-based iPSC device incorporating the PVP interlayer exhibited a power conversion efficiency (PCE) of 12.55%, which is enhanced by ∼15.9% relative to that of the control device without PVP interlayer (10.83%). The mechanistic investigations based on morphological, optical, and impedance spectroscopic characterizations reveal that incorporation of PVP interlayer promotes electron transport across the CH3NH3PbI3-xClx perovskite/Ag interface via PCBM ETL. Besides, PVP incorporation induces the formation of a dipole layer, which may enhance the built-in potential across the device, conjunctly promoting electron transport from PCBM to Ag cathode and consequently leading to significantly improved fill factor (FF) from 58.98 to 66.13%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.