Abstract

We investigate a link between the energy-momentum dispersion relation and the spectral distance in the context of a Lorentzian almost-commutative spectral geometry, defined by the product of Minkowski spacetime and an internal discrete noncommutative space. Using the causal structure, the almost-commutative manifold can be identified with a pair of four-dimensional Minkowski spacetimes embedded in a five-dimensional Minkowski geometry. Considering fermions traveling within the light cone of the ambient five-dimensional spacetime, we then derive the energy-momentum dispersion relation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.