Abstract

The film growth and morphology of epitaxial Mn films grown on Fe(0 0 1) single-crystal whiskers measured with scanning tunneling microscopy (STM) provides insight into the mechanism of interlayer exchange coupling in Fe/Mn/Fe(0 0 1) trilayers. The proximity model of Slonczewski for exchange coupling through an antiferromagnet predicts that the coupling angle between the ferromagnetic layers will oscillate around a mean value of 90° with an amplitude that is very sensitive to the width of the thickness distribution of the spacer layer. We measure the thickness distribution with the STM and find that the coupling angle variation predicted by the proximity model is qualitatively consistent with the actual coupling angle variations in Fe/Mn/Fe(0 0 1) measured with scanning electron microscopy with polarization analysis (SEMPA). Going beyond the proximity model and allowing for a non-uniform magnetization of the thin Fe overlayer provides an improved explanation of the results. We contrast the behavior of Fe/Mn/Fe(0 0 1), where the proximity model appears applicable, to coupling through antiferro-magnetic Cr in Fe/Cr/Fe(0 0 1), where it is not, and discuss possible reasons for the difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.