Abstract

A series of K3–xNaxB6O10Br (0.5 ≤ x ≤ 1.2) polycrystalline samples have been synthesized by the standard solid-state reaction method. Four stoichiometric crystals K3–xNaxB6O10Br (x = 0.13, 0.67, 1.30, 2.20) have been successfully grown from the high-temperature solution, and the crystal structures were determined by single-crystal X-ray diffraction. Interestingly, the Na+ concentration plays a profound role to influence the crystal structure. Up to about 23% (x = 0.7) K+ ions can be substituted by Na+ ions with the same noncentrosymmetric (NCS) crystal structure of K3B6O10Br (space group R3m) being retained, while a higher Na concentration would lead to it crystallizing in the centrosymmetric (CS) space group Pnma. Meanwhile, the second-harmonic generation (SHG) response of K3–xNaxB6O10Br (x ≤ 0.7) is about 2.8 times that of KDP, while the SHG response decreases sharply when x > 0.7 (the SHG response is zero at x = 1.3). After careful structural analysis, we believe that the different Br-M (M = K/Na, K, o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.