Abstract

A zero eigenvalue in the spectrum of the adjacency matrix of the graph representing an unsaturated carbon framework indicates the presence of a nonbonding pi orbital (NBO). A graph with at least one zero in the spectrum is singular; nonzero entries in the corresponding zero-eigenvalue eigenvector(s) (kernel eigenvectors) identify the core vertices. A nut graph has a single zero in its adjacency spectrum with a corresponding eigenvector for which all vertices lie in the core. Balanced and uniform trivalent (cubic) nut graphs are defined in terms of (-2, +1, +1) patterns of eigenvector entries around all vertices. In balanced nut graphs all vertices have such a pattern up to a scale factor; uniform nut graphs are balanced with scale factor one for every vertex. Nut graphs are rare among small fullerenes (41 of the 10 190 782 fullerene isomers on up to 120 vertices) but common among the small trivalent polyhedra (62 043 of the 398 383 nonbipartite polyhedra on up to 24 vertices). Two constructions are described, one that is conjectured to yield an infinite series of uniform nut fullerenes, and another that is conjectured to yield an infinite series of cubic polyhedral nut graphs. All hypothetical nut fullerenes found so far have some pentagon adjacencies: it is proved that all uniform nut fullerenes must have such adjacencies and that the NBO is totally symmetric in all balanced nut fullerenes. A single electron placed in the NBO of a uniform nut fullerene gives a spin density distribution with the smallest possible (4:1) ratio between most and least populated sites for an NBO. It is observed that, in all nut-fullerene graphs found so far, occupation of the NBO would require the fullerene to carry at least 3 negative charges, whereas in most carbon cages based on small nut cubic polyhedra, the NBO would be the highest occupied molecular orbital (HOMO) for the uncharged system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.