Abstract
We study the problem of non-Bayesian social learning with uncertain models, in which a network of agents seek to cooperatively identify the state of the world based on a sequence of observed signals. In contrast with the existing literature, we focus our attention on the scenario where the statistical models held by the agents about possible states of the world are built from finite observations. We show that existing non-Bayesian social learning approaches may select a wrong hypothesis with non-zero probability under these conditions. Therefore, we propose a new algorithm to iteratively construct a set of beliefs that indicate whether a certain hypothesis is supported by the empirical evidence. This new algorithm can be implemented over time-varying directed graphs, with non-doubly stochastic weights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.