Abstract

The Metropolis-Adjusted Langevin Algorithm (MALA), originally introduced to sample exactly the invariant measure of certain stochastic differential equations (SDEs) on infinitely long time intervals, can also be used to approximate pathwise the solution of these SDEs on finite time intervals. However, when applied to an SDE with a nonglobally Lipschitz drift coefficient, the algorithm may not have a spectral gap even when the SDE does. This paper reconciles MALA's lack of a spectral gap with its ergodicity to the invariant measure of the SDE and finite time accuracy. In particular, the paper shows that its convergence to equilibrium happens at an exponential rate up to terms exponentially small in time-step size. This quantification relies on MALA's ability to exactly preserve the SDE's invariant measure and accurately represent the SDE's transition probability on finite time intervals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.