Abstract

The effect of high voltage on capillary electrophoresis (CE) separations of anionic analytes in nonaqueous separation media was investigated. Methanol, ethanol, 1-propanol, and 1-butanol were tested as background electrolyte (BGE) solvents. Experiments were carried out with a laboratory-built CE instrument suitable for high-voltage separations. Potentials up to 60 kV were applied with reversed polarity to generate unusually high field strengths (e.g. 2000 Vcm-1) and so achieve fast and efficient separations. Highest separation efficiencies were obtained with propanol as BGE solvent, and the dependency of the efficiency on the separation voltage was more or less linear. With the other alcohols, separation efficiency decreased or remained roughly constant with increasing absolute voltage. The separation efficiencies are discussed in terms of longitudinal diffusion, Joule heating, and analyte interaction with the capillary wall. Capillary preconditioning had a varied effect on the separations in the different BGEs as the BGE and the conditioning process affected the electroosmotic flow (EOF) velocity and direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.