Abstract

Gene conversion is the unidirectional transfer of genetic information between allelic (orthologous) or nonallelic (paralogous) DNA segments. Recently, there has been much interest in understanding how gene conversion shapes the nucleotide composition of the genomic landscape. A widely held hypothesis is that gene conversion is universally GC-biased. However, direct experimental evidence of this hypothesis is limited to a single study of meiotic crossovers in yeast. Although there have been a number of indirect studies of gene conversion, evidence of GC-biased replacements gathered from such studies can also be attributed to positive selection, which has the same evolutionary dynamics as biased gene conversion. Here, we apply a direct phylogenetic approach to examine nucleotide replacements produced by nonallelic gene conversion in Drosophila and primate genomes. We find no evidence for GC-biased gene conversion in either lineage, suggesting that previously observed GC biases may be due to positive selection rather than to biased gene conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.