Abstract

The recently introduced full multiple spawning (FMS) method for molecular dynamics beyond the Born–Oppenheimer approximation is tested against exact numerical solution of the coupled nuclear Schrödinger equation for a two-dimensional model problem with two electronic states. The method uses a multiconfigurational frozen Gaussian ansatz for the wave function and the key idea is to expand the size of the basis set only during nonadiabatic events, using available information to predict the regions of phase space where population will be created. This is accomplished via the spawning procedure which keeps the basis size manageable while ensuring that it provides a reasonable approximation to the exact wave function. The parameters that govern the numerical accuracy of the method are discussed in detail. Expectation values and branching ratios are predicted quantitatively over a broad range of energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.