Abstract
Photosynthetic organisms exploit interacting quantum degrees of freedom, namely intrapigment electron-vibrational (vibronic) and interpigment dipolar couplings (J-coupling), to rapidly and efficiently convert light into chemical energy. These interactions result in wave function configurations that delocalize excitation between pigments and pigment vibrations. Our study uses multidimensional spectroscopy to compare two model photosynthetic proteins, the Fenna-Matthews Olson (FMO) complex and light harvesting 2 (LH2), and confirm that long-lived excited state coherences originate from the vibrational modes of the pigment. Within this framework, the J-coupling of vibronic pigments should have a cascading effect in modifying the structured spectral density of excitonic states. We show that FMO effectively couples all of its excitations to a uniform set of vibrations while in LH2, its two chromophore rings each couple to a unique vibrational environment. We simulate energy transfer in a simple model system with non-uniform vibrational coupling to demonstrate how modification of the vibronic coupling strength can modulate energy transfer. Because increasing vibronic coupling increases internal relaxation, strongly coupled vibronic states can act as an energy funnel, which can potentially benefit energy transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.