Abstract
We call a metric m-quasi-Einstein if \({Ric_X^m}\) (a modification of the m-Bakry–Emery Ricci tensor in terms of a suitable vector field X) is a constant multiple of the metric tensor. It is a generalization of Einstein metrics which contain Ricci solitons. In this paper, we focus on left-invariant vector fields and left-invariant Riemannian metrics on quadratic Lie groups. First we prove that any left-invariant vector field X such that the left-invariant Riemannian metric on a quadratic Lie group is m-quasi-Einstein is a Killing vector field. Then we construct infinitely many non-trivial m-quasi-Einstein metrics on solvable quadratic Lie groups G(n) for m finite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.