Abstract

Summary We investigate a new non-stationary non-parametric volatility model, in which the conditional variance of time series is modelled as a non-parametric function of an integrated or near-integrated covariate. Importantly, the model can generate the long memory property in volatility and allow the unconditional variance of time series to be time-varying. These properties cannot be derived from most existing non-parametric or semi-parametric volatility models. We show that the kernel estimate of the model is consistent and its asymptotic distribution is mixed normal. For an empirical application of the model, we study the daily S&P 500 index return volatility using the VIX index as the covariate. It is shown that our model performs reasonably well both in within-sample and out-of-sample forecasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.