Abstract
In this paper we introduce the concept of purely infinite rings, which in the simple case agrees with the already existing notion of pure infiniteness. We establish various permanence properties of this notion, with respect to passage to matrix rings, corners, and behaviour under extensions, so being purely infinite is preserved under Morita equivalence. We show that a wealth of examples falls into this class, including important analogues of constructions commonly found in operator algebras. In particular, for any (s-) unital $K$-algebra having enough nonzero idempotents (for example, for a von Neumann regular algebra) its tensor product over $K$ with many non-simple Leavitt path algebras is purely infinite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.