Abstract

Motivated by what one observes dealing with PT-symmetric quantum mechanics, we discuss what happens if a physical system is driven by a diagonalizable Hamiltonian with not all real eigenvalues. In particular, we consider the functional structure related to systems living in finite-dimensional Hilbert spaces, and we show that certain intertwining relations can be deduced also in this case if we introduce suitable antilinear operators. We also analyze a simple model, computing the transition probabilities in the broken and in the unbroken regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.