Abstract

A non parametric estimator of the joint distribution function of a positive bivariate random vector is introduced. The case where one of the two variables is subject to right censoring is considered. To construct the proposed estimator, Poisson distributions are used for smoothing the empirical estimator of Stute (1993). The strong uniform convergence is established. Also, by stating the asymptotic i.i.d. representation, the asymptotic bias, variance, and normality are deduced. The smooth estimator is applied for analyzing survival data from patients with advanced lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.