Abstract

Sarason did pioneer work on reflexive operator and reflexivity of normal operators, however, he did not used the word reflexive but his results are equivalent to say that every normal operator is reflexive. The word reflexive was suggested by HALMOS and first appeared in H. Rajdavi and P. Rosenthals book `Invariant Subspaces’ in 1973. This line of research was continued by Deddens who showed that every isometry in B(H) is reflexive. R. Wogen has proved that `every quasi-normal operator is reflexive’. These results of Deddens, Sarason, Wogen are particular cases of theorem of Olin and Thomson which says that all sub-normal operators are reflexive. In other direction, Deddens and Fillmore characterized these operators acting on a finite dimensional space are reflexive. J. B. Conway and Dudziak generalized the result of reflexivity of normal, quasi-normal, sub-normal operators by proving the reflexivity of Vonneumann operators. In this paper we shall discuss the condition under which m-isometries operators turned to be reflexive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.