Abstract
In this paper, we study a fundamental problem in submodular optimization known as sequential submodular maximization. The primary objective of this problem is to select and rank a sequence of items to optimize a group of submodular functions. The existing research on this problem has predominantly concentrated on the monotone setting, assuming that the submodular functions are non-decreasing. However, in various real-world scenarios, like diversity-aware recommendation systems, adding items to an existing set might negatively impact the overall utility. In response, we propose to study this problem with non-monotone submodular functions and develop approximation algorithms for both flexible and fixed length constraints, as well as a special case with identical utility functions. The empirical evaluations further validate the effectiveness of our proposed algorithms in the domain of video recommendations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.