Abstract

Common-metal-based single-atom catalysts (SACs) are quite difficult to design due to the complex synthesis processes required. Herein, we report a single-atom nickel iodide (SANi-I) electrocatalyst with atomically dispersed non-metal iodine atoms. The SANi-I is prepared via a simple calcination step in a vacuum-sealed ampoule and subsequent cyclic voltammetry activation. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and synchrotron-based X-ray absorption spectroscopy are applied to confirm the atomic-level dispersion of iodine atoms and detailed structure of SANi-I. Single iodine atoms are found to be isolated by oxygen atoms. The SANi-I is structural stable and shows exceptional electrocatalytic activity for the hydrogen evolution reaction (HER). In situ Raman spectroscopy reveals that the hydrogen adatom (Hads ) is adsorbed by a single iodine atom, forming the I-Hads intermediate, which promotes the HER process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.