Abstract

Our ability to model the shapes and strengths of iron lines in the solar spectrum is a critical test of the accuracy of the solar iron abundance, which sets the absolute zero-point of all stellar metallicities. We use an extensive 463-level Fe atom with new photoionisation cross-sections for FeI as well as quantum mechanical calculations of collisional excitation and charge transfer with neutral hydrogen; the latter effectively remove a free parameter that has hampered all previous line formation studies of Fe in non-local thermodynamic equilibrium (NLTE). For the first time, we use realistic 3D NLTE calculations of Fe for a quantitative comparison to solar observations. We confront our theoretical line profiles with observations taken at different viewing angles across the solar disk with the Swedish 1-m Solar Telescope. We find that 3D modelling well reproduces the observed centre-to-limb behaviour of spectral lines overall, but highlight aspects that may require further work, especially cross-sections for inelastic collisions with electrons. Our inferred solar iron abundance is log(eps(Fe))=7.48+-0.04.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.