Abstract

The present work deals with geometrically non-linear post-buckling load–deflection behavior of functionally graded material (FGM) Timoshenko beam under in-plane thermal loading. Thermal loading is applied by providing non-uniform temperature rise across the beam thickness at steady-state condition. FGM is modeled by considering continuous distribution of metal and ceramic constituents across the thickness using power law variation of volume fraction. The effect of geometric non-linearity at large post-buckled configuration is incorporated using von Kármán type non-linear strain–displacement relationship. The governing equations are obtained using the minimum potential energy principle. The system of non-linear algebraic equations is solved using Broyden’s algorithm. Four different FGMs are considered. A comparative study for post-buckling load–deflection behavior in non-dimensional form is presented for different volume fraction exponents and also for different FGMs, each for different length–thickness ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.