Abstract

This paper investigates the identification of discrete-time non-linear systems using radial basis functions. A forward regression algorithm based on an orthogonal decomposition of the regression matrix is employed to select a suitable set of radial basis function centers from a large number of possible candidates and this provides, for the first time, fully automatic selection procedure for identifying parsimonious radial basis function models of structure-unknown non-linear systems. The relationship between neural networks and radial basis functions is discussed and the application of the algorithms to real data is included to demonstrate the effectiveness of this approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.