Abstract
Abstract The static non-linear behavior of thin-walled composite beams is analyzed considering the effect of initial imperfections. A simple approach is used for determining the influence of imperfection on the buckling, prebuckling and postbuckling behavior of thin-walled composite beams. The fundamental and secondary equilibrium paths of perfect and imperfect systems corresponding to a major imperfection are analyzed for the case where the perfect system has a stable symmetric bifurcation point. A geometrically non-linear theory is formulated in the context of large displacements and rotations, through the adoption of a shear deformable displacement field. An initial displacement, either in vertical or horizontal plane, is considered in presence of initial geometric imperfection. Ritz's method is applied in order to discretize the non-linear differential system and the resultant algebraic equations are solved by means of an incremental Newton–Rapshon method. The numerical results are presented for a simply supported beam subjected to axial or lateral load. It is shown in the examples that a major imperfection reduces the load-carrying capacity of thin-walled beams. The influence of this effect is analyzed for different fiber orientation angle of a symmetric balanced lamination. In addition, the postbuckling response obtained with the present beam model is compared with the results obtained with a shell finite element model (Abaqus).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.