Abstract
The non-linear propagation of the intense near-infrared (NIR) driving field in crystals poses a challenge and can offer an opportunity to control the spectral properties of harmonics in solids. Here, we have investigated the non-linear propagation effects in wide bandgap dielectrics such as Magnesium Oxide (MgO), Chromium (Cr) doped MgO (Cr: MgO), Sapphire (Sa) crystals, and fused silica (FS). Furthermore, we have generated second and third harmonics (TH) and measured the linear polarization dependence of harmonics in these thin solids to explore the non-linear response at a strong field. We observe spectral shifts and broadening of the driving field spectrum which is imprinted on the harmonics. We attribute these effects to the strong photoionization, generation of free-carrier density, and self-phase modulation effects. This work shows the sensitivity to control the spectral profile of harmonics by manipulating the driving field, showing the possibility of new tailored solid-state ultraviolet sources for optical diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.