Abstract

Studies of a class of infinite one dimensional self-gravitating systems have highlighted that, on the one hand, the spatial clustering which develops may have scale invariant (fractal) properties, and, on the other, that they display "self-similar" properties in their temporal evolution. The relevance of these results to three dimensional cosmological simulations has remained unclear. We show here that the measured exponents characterizing the scale-invariant non-linear clustering are in excellent agreement with those derived from an appropriately generalized "stable-clustering" hypothesis. Further an analysis in terms of "halos" selected with a friend-of-friend algorithm reveals that such structures are, statistically, virialized across the range of scales corresponding to scale-invariance. Thus the strongly non-linear clustering in these models is accurately described as a virialized fractal structure, very much in line with the "clustering hierarchy" which Peebles originally envisaged qualitatively as associated with stable clustering. If transposed to three dimensions these results would imply, notably, that cold dark matter halos (or even subhalos) are 1) not well modeled as smooth objects, and 2) that the supposed "universality" of their profiles is, like apparent smoothness, an artefact of poor numerical resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.