Abstract
Abstract Non-linear finite element methods are applied in the analysis of single lap joints between fibre-reinforced plastics (FRP) and metals. The importance of allowing for both geometric and material non-linearities is shown. The optimization of single lap joints is done by modifying the geometry of the joint ends. Different shapes of adhesive fillet, reverse tapering of the adherend, rounded edges and denting are applied in order to increase the joint strength. The influence of the joint-end geometry is shown for different metal adherend/FRP adherend/adhesive combinations. The results of the numerical predictions suggest that with a careful joint-end design the strength of the joints can be increased by 90–150%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.