Abstract

Non-invasive localization of premature ventricular beat (PVB) foci is very important for medical treatment of numerous cardiac diseases. In this work a model-based method of reconstruction of ectopic center locations is investigated. Within the scope of this method patient's multichannel ECG is used as a reference for optimization of an electrophysiological cardiac model. This model is based on the cellular automaton principle and utilizes anatomical data of the patient. Optimized are coordinates of the ectopic focus as well as excitation conduction velocity of ventricular myocardium. Initial values for these parameters are obtained by solving the linearized problem of electrocardiography in terms of activation times. Optimization is performed by minimization of discrepancy between the simulated and reference ECGs. The aim of the current work is to estimate the quality of ectopic focus localization delivered by this method. Four sample ectopic beats have been simulated, with their foci located in different regions of the left ventricle. 1% Gaussian noise has been introduced into the resulting ECGs. In this way the measured ECG signals for this investigation have been obtained. Afterwards the origin of each ectopic beat has been reconstructed using the model-based approach. The method has demonstrated reliable localization of PVB foci, reconstruction errors have not exceeded 6.1 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.