Abstract

Methods for the detection of plasmid loss in natural environments have typically relied on replica plating, selective markers and PCR. However, these traditional methods have the limitations of low sensitivity, underestimation of specific cell populations, and lack of insightful data for non-homogeneous environments. We have developed a non-invasive microscopic analytical method to quantify local plasmid segregational loss from a bacterial population within a developing biofilm. The probability of plasmid segregational loss in planktonic and biofilm cultures of Pseudomonas putida carrying the TOL plasmid (pWWO::gfpmut3b) was determined directly in situ, in the absence of any applied selection pressure. Compared to suspended liquid culture, we report that the biofilm mode of growth enhances plasmid segregational loss. Results based on a biofilm-averaged analysis reveal that the probability of plasmid loss in biofilm cultures (0.016 ± 0.004) was significantly greater than that determined in planktonic cultures (0.0052 ± 0.0011). Non-invasive assessments showed that probabilities of plasmid segregational loss at different locations in a biofilm increased dramatically from 0.1% at the substratum surface to 8% at outside layers of biofilm. Results suggest that higher nutrient concentrations and subsequentially higher growth rates resulted in higher probability of plasmid segregational loss at the outer layers of the biofilm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.