Abstract

Background: Monitoring of plasma concentrations is a necessity for narrow therapeutic index potent drugs. Development of non-invasive methods can save the patients from the trauma of needles and hence is considered as a research priority. Introduction: Gabapentin, an anti-epileptic drug requires therapeutic monitoring because of its narrow therapeutic index. The objective of the study was to develop a suitable method for the non-invasive extraction of gabapentin for the same. Methods: Transdermal reverse iontophoresis was performed using pig ear skin as a barrier membrane. Three compartment iontophoretic cells were used for the extraction study. Extractions were carried out under low intensity electric field (current intensity- 0.5 mA/cm2, electrical field approximately 5 V). The donor compartment was charged with aqueous gabapentin (10 µg/ml in phosphate buffer of pH 7.4). For studying the effect of receiving vehicle (pH, ionic strength, and enhancer) on the extraction efficiency of gabapentin, the two receiver chambers were charged with media having varying concentration of these factors. Drug content was determined by HPLC. Results: Compared to other pHs, cumulative extraction of gabapentin at pH 5 was significantly higher at both anode and cathode (p<0.001). At low ionic strength, extraction of gabapentin increased linearly with the increase in concentration of ions up to a certain value but at very high ionic strength the pattern reversed. Similar results were obtained with enhancer (polyethylene glycol 400). Extraction increased with increase in polyethylene glycol 400 up to 3% and then decreased. Conclusion: Extraction flux can be optimized by manipulation of the receiver media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.